Crystal and Molecular Structure of Isopropamide lodide [4-Di-isopropyl-amino-2,2-diphenylbutyramide Methiodide]

By (the late) Narayandas Datta, Mrs. Patricia Breen, and Peter Pauling,* William Ramsay, Ralph Forster, and Christopher Ingold Laboratories, University College London, Gower Street, London WC1E 6BT

Abstract

The structure of the title compound (I) has been determined by single-crystal X-ray diffraction. Crystals are orthorhombic in a unit cell of dimensions $a=17.624(6), b=14.589(5) . c=9.012(4) \AA$, space group $P 2_{1} 2_{1} 2_{1}$. $Z=4$. The structure was solved by Patterson and Fourier methods and refined by least squares to $R 0.055$ for 1241 observed diffractometer data. All hydrogen atoms were located. The angle between the two phenyl groups is 82°. The amide group is planar and makes angles of 84 and 89° with the two phenyl groups.

ISOPROPAMIDE is an anticholinergic drug ${ }^{1}$ and its iodide (I), $\left[\mathrm{H}_{2} \mathrm{~N} \cdot \mathrm{C}(: \mathrm{O}) \cdot \mathrm{CPh}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \stackrel{+}{\mathrm{N}}\left(\mathrm{CHMe}_{2}\right)_{2} \mathrm{Me}\right] \mathrm{I}$, was chosen for structure determination as a part of systematic studies of drugs affecting the cholinergic nervous system.

EXPERIMENTAL

Crystals of (I) grown from ethanol are elongated along c with the following form: pinacoids $\{100\},\{010\}$, and prisms $\{110\},\{011\}$, and $\{101\}$. Crystals were examined under a polarizing microscope. A section normal to the acute bisectrix was examined in plane polarised convergent light and the sign of the crystal was determined to be positive.
Crystal Data. $-\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{IN}_{2} \mathrm{O}, M=480.42$. Orthorhombic, $a=17.624(6), b=14.589(5), c=9.012(4), U=2317(1) \AA^{3}$, $D_{\mathrm{m}}=1.39(1) \mathrm{g} \mathrm{cm}^{-3}$ (by flotation), $Z=4, D_{\mathrm{c}}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right)$ from systematic absences. Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\operatorname{Mo}-K_{\alpha}\right)=16.1 \mathrm{~cm}^{-1}$.

Space group and preliminary cell parameters were deter-
mined from oscillation and precession photographs. Refined cell-parameters and standard deviations were determined by use of the cell refinement program described in ref. 2.

Intensity Measurement.-Three-dimensional X-ray diffraction data from a single crystal $(0.18 \times 0.10 \times 0.30$ mm) of the title compound were collected on a computercontrolled ${ }^{2}$ Stoe four-circle diffractometer by use of Mo- K_{α} radiation [graphite monochromator (002)]. A coupled $\theta-2 \theta$ step scan with $\Delta 2 \theta 0.04^{\circ}$, a counting time of 6 s per step, and a peak width of 1.4° were used. In the range $205-60^{\circ}, 3268$ observations covering one octant of reciprocal space were collected of which 1241 were considered observed, having $I \geqslant 3 \sigma(I)$, and were corrected for Lorentz and polarisation effects. No corrections for absorption were made.
${ }^{1}$ The Merck Index 589, 8th edn., 1968.
${ }^{2}$ W. R. Busing, R. D. Ellison, H. A. Levy, S. P. King, and R. T. Rosebery, U.S. Atomic Energy Commission, Report ORNL 143, 1968.

Structure Solution and Refinement.-The position of the iodide ion was found from an unsharpened Patterson synthesis. A Fourier synthesis using observed data phased on the iodide ion produced a satisfactory trial structure. After successive cycles of full-matrix leastsquares refinement of positional and anisotropic thermal parameters, a difference electron-density synthesis revealed all the hydrogen atom positions. The hydrogen-atom contribution to the calculated structure factors was included but not refined and non-hydrogen atoms refined until all parameter shifts were <0.la. The function

Table 1

Fractional co-ordinates ($\times 10^{4}$) derived from leastsquares refinement, with estimated standard deviations in parentheses

Atom	x	y	z
I(1)	$8764(1)$	$9010(1)$	$8581(2)$
N(1)	$5002(7)$	$5124(7)$	6 388(14)
$\mathrm{C}(1)$	4 999(12)	$5013(14)$	7 998(20)
C(2)	$5144(10)$	4 148(12)	5786 (20)
C(3)	4250 (10)	$5539(12)$	5910 (24)
C(4)	5642 (9)	5812 (10)	6 061(16)
C(5)	$5685(8)$	$6177(8)$	4482 (16)
C(6)	6 368(9)	6 806(9)	4 175(17)
C(7)	$6479(9)$	$6918(10)$	2 468(17)
C (8)	$5855(9)$	6 847(9)	$1497(20)$
C(9)	5912 (11)	7 048(12)	-0032(18)
C(10)	6 608(12)	7 268(12)	-0 594(19)
C(11)	7 268(11)	7344 (12)	0 353(23)
$\mathrm{C}(12)$	7 190(9)	$7135(13)$	$1839(16)$
$\mathrm{C}(13)$	$7108(8)$	6 482(10)	4 834(17)
C(14)	7566 (9)	6972 (11)	5751 (19)
C(15)	8240 (11)	6 636(14)	$6288(22)$
$\mathrm{C}(16)$	8485 (11)	$5739(15)$	$5845(25)$
C(17)	8 038(10)	5 239(12)	$4973(24)$
$\mathrm{C}(18)$	7381 (10)	$5592(11)$	4 424(23)
$\mathrm{C}(19)$	$6145(9)$	7 799(10)	$4887(20)$
$\mathrm{O}(1)$	5 806(7)	7833 (8)	6011 (12)
$\mathrm{N}(2)$	6 414(9)	8 515(7)	4161 (16)
$\mathrm{C}(20)$	4 093(11)	6 498(12)	6 493(30)
C(21)	3 562(11)	4975 (17)	6 302(31)
C(22)	$5081(17)$	4 096(14)	4 199(37)
C(23)	$5874(14)$	3 736(16)	6 294(43)

Table 2
Fractional co-ordinates ($\times 10^{3}$) for hydrogen atoms derived from difference-Fourier synthesis

Atom	x	y	z	Atom	x	y	z
$\mathrm{H}(1,1)$	448	489	835	H(17)	819	459	460
H(1,2)	531	445	825	H(18)	701	526	369
$\mathrm{H}(1,3)$	520	550	835	$\mathrm{H}(20,1)$	417	698	580
H(2)	472	380	623	$\mathrm{H}(20,2)$	449	666	737
$\mathrm{H}(3)$	427	557	475	$\mathrm{H}(20,3)$	370	650	660
$\mathrm{H}(4,1)$	563	629	678	$\mathrm{H}(21,1)$	332	468	547
$\mathrm{H}(4,2)$	615	546	626	$\mathrm{H}(21,2)$	316	533	687
$\mathrm{H}(5,1)$	519	653	421	$\mathrm{H}(21,3)$	380	450	703
$\mathrm{H}(5,2)$	569	567	368	$\mathrm{H}(22,1)$	561	399	381
H(8)	533	667	191	$\mathrm{H}(22,2)$	470	367	390
$\mathrm{H}(9)$	547	702	68	$\mathrm{H}(22,3)$	489	474	382
$\mathrm{H}(10)$	667	745	883	$\mathrm{H}(23,1)$	603	402	563
H(11)	775	752	2	$\mathrm{H}(23,2)$	583	309	657
$\mathrm{H}(12)$	763	718	263	$\mathrm{H}(23,3)$	598	403	744
$\mathrm{H}(14)$	744	760	611	H(N2,1)	632	916	460
$\mathrm{H}(15)$	861	693	702	H(N2,2)	672	846	317
H(16)	896	540	621				

All hydrogen atoms have $U 0.063 \AA^{2}$, the mean isotropic thermal parameter of all non-hydrogen atoms.
minimised was $\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ with $w=4 I / S^{2}$ where $S=\sigma(I)+0.05 I$. The term $0.05 I$, added to the statistical standard deviation, was included because of long-term fluctuation in intensity measurement of the standard

Table 3
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for non-hydrogen atoms, with estimated standard deviations in parentheses
(a) Distances

$\mathrm{N}(1)-\mathrm{C}(1)$	1.46(2)	$\mathrm{C}(7)-\mathrm{C}(12)$	1.41(2)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.54(2)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.41 (2)
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.52(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	1.37 (3)
$\mathrm{N}(1)-\mathrm{C}(4)$	1.54(4)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.45 (3)
$\mathrm{C}(2)-\mathrm{C}(22)$	1.44(3)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.38(3)$
$\mathrm{C}(2)-\mathrm{C}(23)$	1.49(3)	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.36(2)$
$\mathrm{C}(3)-\mathrm{C}(20)$	1.52 (3)	$\mathrm{C}(13)-\mathrm{C}(18)$	1.43(2)
$\mathrm{C}(3)-\mathrm{C}(21)$	1.51 (3)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.37 (3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.52(4)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.44(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.54 (2)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.33(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.56(2)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.36(3)
$\mathrm{C}(6)-\mathrm{C}(13)$	1.51(2)	$\mathrm{C}(19)$-O(1)	1.18 (2)
$\mathrm{C}(6)-\mathrm{C}(19)$	1.63(2)	$\mathrm{C}(19)-\mathrm{N}(2)$	1.32(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.41(2)		
(b) Angles			
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	104(2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	109(2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	122(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	106(2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	117(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	114(2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	115(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118(2)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)$	109(2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121 (2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(22)$	113(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$118(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	114(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	122(2)
$\mathrm{C}(22)-\mathrm{C}(2)-\mathrm{C}(23)$	111(2)	$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	126(2)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(20)$	115(2)	$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(18)$	$118(2)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(21)$	115(2)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	116(2)
$\mathrm{C}(20)-\mathrm{C}(3)-\mathrm{C}(21)$	106(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	123(2)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	116(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	115(2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	110(1)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	115(1)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	122(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(19)$	106(1)	$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{C}(6)$	120(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)$	108(1)	$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{C}(6)$	115(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(19)$	109(2)	$\mathrm{O}(1)-\mathrm{C}(19)-\mathrm{N}(2)$	125(2)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(19)$	109(2)		

Table 4
Interatomic distances (\AA) involving hydrogen atoms

$\mathrm{H}(1,1)-\mathrm{C}(1)$	0.99	$\mathrm{H}(17)-\mathrm{C}(17)$	1.04
$\mathrm{H}(1,2)-\mathrm{C}(1)$	1.02	$\mathrm{H}(18)-\mathrm{C}(18)$	1.05
$\mathrm{H}(1,3)-\mathrm{C}(1)$	0.89	$\mathrm{H}(20,1)-\mathrm{C}(20)$	0.96
$\mathrm{H}(2)-\mathrm{C}(2)$	0.99	$\mathrm{H}(20,2)-\mathrm{C}(20)$	1.08
$\mathrm{H}(3)-\mathrm{C}(3)$	1.05	$\mathrm{H}(20,3)-\mathrm{C}(2)$	0.90
$\mathrm{H}(4,1)-\mathrm{C}(4)$	0.96	$\mathrm{H}(21,1)-\mathrm{C}(21)$	0.96
$\mathrm{H}(4,2)-\mathrm{C}(4)$	1.05	$\mathrm{H}(21,2)-\mathrm{C}(21)$	1.04
$\mathrm{H}(5,1)-\mathrm{C}(5)$	1.04	$\mathrm{H}(21,3)-\mathrm{C}(21)$	1.04
$\mathrm{H}(5,2)-\mathrm{C}(5)$	1.03	$\mathrm{H}(22,1)-\mathrm{C}(22)$	1.01
$\mathrm{H}(8)-\mathrm{C}(8)$	1.03	$\mathrm{H}(22,2)-\mathrm{C}(22)$	0.95
$\mathrm{H}(9)-\mathrm{C}(9)$	0.97	$\mathrm{H}(22,3)-\mathrm{C}(22)$	1.05
$\mathrm{H}(10)-\mathrm{C}(10)$	1.04	$\mathrm{H}(23,3)-\mathrm{C}(23)$	0.84
$\mathrm{H}(11)-\mathrm{C}(11)$	0.94	$\mathrm{H}(23,2)-\mathrm{C}(23)$	0.98
$\mathrm{H}(12)-\mathrm{C}(12)$	1.05	$\mathrm{H}(23,3)-\mathrm{C}(23)$	1.13
$\mathrm{H}(14)-\mathrm{C}(14)$	1.00	$\mathrm{H}(\mathrm{N} 2,1)-\mathrm{N}(2)$	1.04
$\mathrm{H}(15)-\mathrm{C}(15)$	1.03	$\mathrm{H}(\mathrm{N} 2,2)-\mathrm{N}(2)$	1.05
$\mathrm{H}(16)-\mathrm{C}(16)$	1.03		

reflection, measured every 25 reflections. Atomic scattering factors for neutral carbon, nitrogen, oxygen, and for the iodide ion were taken from ref. 3 and for hydrogen from ref. 4. Final cycles of refinement were carried out on the two possible mirror-images of the molecule taking anomalous dispersion into account. The final values of R are 0.058 and 0.054 . Atomic parameters (Tables 1 and 2) are derived from the refinement which gave a lower R.

Positional parameters for non-hydrogen atoms are given in Table 1 and the hydrogen atom positions derived from
${ }^{3}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }_{4}$ 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
the difference Fourier synthesis in Table 2. Bond distances and angles are given in Tables 3 and 4. Observed and calculated structure factors and anisotropic thermal parameters are listed in Supplementary Publication No. SUP 21911 (7 pp., 1 microfiche).*

Figure 1 Perspective view of molecule showing the atom numbering system used in the analysis

Figure 2 Molecular packing viewed along the c axis

All computational work was carried out on the University College London IBM 360 computer.

[^0]Table 5
Equations * of mean planes with displacements (\AA) of relevant atoms in square brackets
Plane (1): C(7)—(12)

$$
-0.198 X+0.965 Y+0.173 Z=15.528
$$

$[\mathrm{C}(7) 0.02, \mathrm{C}(8)-0.01, \mathrm{C}(9) 0.01, \mathrm{C}(10)-0.01, \mathrm{C}(11) 0.02$, C(12) -0.02$]$
Plane (2): $\mathrm{C}(13)-(18)$

$$
-0.477 X+-0.385 Y+0.790 Z=17.084
$$

$[\mathrm{C}(13) 0.01, \mathrm{C}(14) 0.00, \mathrm{C}(15) 0.00, \mathrm{C}(16)-0.01, \mathrm{C}(17) 0.02$, $\mathrm{C}(18)-0.02]$
Plane (3): $\mathrm{C}(6), \mathrm{C}(19), \mathrm{O}(1), \mathrm{N}(2), \mathrm{H}(\mathrm{N} 2,1), \mathrm{H}(\mathrm{N} 2,2)$

$$
0.847 X+-0.024 Y+0.531 Z=16.279
$$

$[\mathrm{C}(6) 0.01, \mathrm{C}(19)-0.02, \mathrm{O}(1) 0.01, \mathrm{~N}(2) 0.01, \mathrm{H}(\mathrm{N} 2,1) 0.05$, $\mathrm{H}(\mathrm{N} 2,2)-0.01]$

* Based on orthonormalized co-ordinates: X is parallel to crystallographic a axis, Y is perpendicuar to X in the plane $a b$, and Z is perpendicular to the plane $a b$ and completes a right-handed set of axes, X, Y, Z.

TABLE 6
Torsion angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses *

$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-176(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(22)$	173(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	-60(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(20)$	64(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(21)$	$-60(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-170(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(20)$	180(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(21)$	56(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	76(2)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(22)$	55(2)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	-178(2)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$-53(3)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(22)$	-72(2)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(23)$	55(2)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(20)$	$-51(2)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(21)$	- 174(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	165(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	42(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(19)$	-78(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	28(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	-155 (1)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	-125(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(18)$	58(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(19)-\mathrm{O}(1)$	38(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(19)-\mathrm{N}(2)$	-146(1)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	172(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	-172(2)
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-179(2)
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	-179(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	112(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(18)$	-65(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(19)-\mathrm{O}(1)$	156(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(19)-\mathrm{N}(2)$	-29(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$4(2)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$-5(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)$	154(1)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(19)$	-87(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	5(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-3(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$-5(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	4(3)
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)$	-29(2)
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(19)$	90(2)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(19)-\mathrm{O}(1)$	-86(2)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(19)-\mathrm{N}(2)$	90(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$1(3)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$-5(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(19)$	-7(2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$3(2)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-3(3)$

* The sign convention is that given in W. Klyne and V. Prelog, Experientia, 1960, 16, 521 .

DISCUSSION

Description of the Molecular Structure.-The atomic numbering scheme used in this analysis and configuration of the molecule as observed in the crystal is shown in Figure 1. Observed torsion angles for non-hydrogen atoms and the mean plane equations for certain groups of atoms in the molecule are given in Tables 5 and 6 , which show that the amide group $[\mathrm{C}(6), \mathrm{C}(19), \mathrm{N}(2)$ $\mathrm{O}(1), \mathrm{H}(\mathrm{N} 2,1)$, and $\mathrm{H}(\mathrm{N} 2,2)]$ is planar, as are the two phenyl groups $[\mathrm{C}(7)-(12)$ and $\mathrm{C}(13)-(18)]$. The angle between the planes of the phenyl groups is 82°, comparable to the values 84° which the mean plane of the cyclohexyl group makes with the phenyl group in hexapyrronium bromide ${ }^{5}$ and 72° between the mean planes of the phenyl groups in benactyzine hydrochloride. ${ }^{6}$ Both these compounds are antimuscarinic drugs. The interplanar angles between the amide group
${ }_{5}^{5}$ R. W. Baker, N. Datta, and P. J. Pauling, J.C.S. Perkin II, 1973, 1963.
and the two phenyl groups $C(7)-(12)$ and $C(13)-(18)$ are 84 and 89° respectively.

There are only three intermolecular contacts $<3.5 \AA$. These are $\mathrm{O}(1) \cdots \mathrm{C}(1)$ at $1-x, \frac{1}{2}+y, 1+\frac{1}{2}-z 3.59$, $\mathrm{O}(1) \cdots \mathrm{C}(10)$ at $x, y, 1-z 3.47$, and $\mathrm{C}(9) \cdots \mathrm{C}(22)$ at $1-x, 1-\frac{1}{2}+y, \frac{1}{2}-z 3.54 \AA$.

Figure 2 shows the molecular packing viewed along the [001] axis. The diagram is produced by use of computer program PLUTO.?

This investigation was supported by the M.R.C., the United States National Institutes of Health (Division of Neurological Diseases and Stroke), and by the National Institute of Mental Health (Division of Mental Health). We thank John Cresswell for the drawing.
[5/2504 Received, 22nd December, 1975]

[^1]
[^0]: * See Notice to Authors No. 7 in J.C.S. Perkin II, 1976, Index issue.

[^1]: ${ }^{6}$ T. J. Petcher, J.C.S. Perkin II, 1974, 1151.
 ${ }^{7}$ S. Motherwell, ' PLUTO,' program for plotting molecular and crystal structures, University Chemical Laboratory, Cambridge.

